
Canadian HPC as a Service
SLUG 24 Sep. 12-13 2024

Principal developer of Magic Castle
Digital Research Alliance of Canada

Director of software development
Calcul Québec

felix@calculquebec.ca

Félix-Antoine
Fortin

mailto:felix@calculquebec.ca

Magic Castle - Canadian HPC as a Service

1. Genesis
2. Technical overview
3. Variety of use cases

Magic Castle
Genesis

5

High Performance Computing (HPC)
Research infrastructure landscape in Canada

Data centre

Local team

6

High Performance Computing (HPC)
Research infrastructure landscape in Canada

95+
% usage

150 workshops
/ year

How to train users at scale without
impacting research?

Design an accessible tool for learning HPC

● Focus on recreating the Alliance HPC environment
● Include key features:

○ Slurm
○ Scientific software stack
○ GPU support

● Minimal IT administration knowledge required
● Quisk setup - few minutes

We want accessible, inexpensive sandbox environments,
designed to facilitate teaching to audiences of various sizes.

It should be as easy as Legos…
for adults.

 Open source infrastructure-as-code
aiming to reproduce the HPC user

experience in the cloud

Technical Overview

Imagine you are a wizard and you want to build a
new castle.

You don’t know much about building castles
and/or you already have enough on your plate
defeating dark forces.

If only there was someone able to take care of it
all for you…

Part architect :

● Puts your needs in writing
● Don’t need a dungeon

right now? Can close it
down temporarily

Part foreman :

● Manages the
construction site

● Monitors and fixes
problems regularly

With the best social skills! Will set up your
castle anywhere

Design choices

● Infrastructure: 100% Terraform
○ No CLI or wrapper, no API interaction
○ A single interface to interact with all major cloud providers

● Configuration: cloud-init and Puppet
○ No knowledge of Puppet is required. The agent is autonomous.

● Scheduler: Slurm
○ Support dynamic nodes
○ Main scheduler used by the Alliance in Canada.

● Cloud providers: AWS, Azure, Google, OpenStack, OVH
○ Other providers can be added by following the documentation

● Provider agnostic autoscaling
● Curated solution that still allows customization

○ via input parameters and YAML file

https://github.com/computecanada/magic_castle

Design choices

https://github.com/ComputeCanada/magic_castle/blob/main/docs/design.md
https://github.com/computecanada/magic_castle

plan apply configure

enjoy!

Spack

Over 3000 scientific software are one
“module load” away thanks to

Users can also install software using

How does it
work?

What is Terraform?

plan apply configure

Terraform is an infrastructure-as-code software tool.
Users define and provide data center infrastructure
using a declarative configuration language(HCL).
It supports a number of cloud infrastructure providers
such as AWS, Microsoft Azure, Google Cloud
Platform, and OpenStack.

How does it work?

source: https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code

CLI

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code

How does it work?
resource "openstack_compute_instance_v2" "mgmt01" {
 name = "mgmt01"
 flavor_id = "p4-6gb"
 key_pair = "ssh-ed25519 ..."
 security_groups = ["default"]

 block_device {
 image_name = "Rocky-8"
 source_type = "image"
 volume_size = "50"
 boot_index = 0
 destination_type = "volume"
 delete_on_termination = true
 }
}

apply configureplan

IaC to create a Kubernetes cluster in GCP
module "gke" {
 source = "..."
 project_id = "<PROJECT ID>"
 name = "gke-test-1"
 region = "us-central1"
 zones = ["us-central1-a"]
 network = "vpc-01"
 http_load_balancing = false
 ...
}

plan apply configure

$ terraform apply
Terraform will perform the following actions:
...
Do you want to perform these actions?
 Enter a value: yes

apply configureplan

23

The infrastructure is defined in a main Terraform module. Each cloud
provider has its dedicated main module:

24

The main modules share common inputs:

common/variables.tf

25

And common outputs:

common/variables.tf

common/outputs.tf

These common
inputs create an easy
to use interface
without vendor
lock-in.

CODE EDITOR

 source = "./aws"

 config_git_url = "https://github.com/ComputeCanada/puppet-magic_castle.git"

 config_version = "14.0.0"

 cluster_name = "phoenix"

 domain = "your-domain-name.cloud"

 image = "ami-09ada793eea1559e6"

 instances = {

 mgmt = { type = "t3.medium", count = 1, tags = ["mgmt", "puppet", "nfs"] },

 login = { type = "t3.medium", count = 1, tags = ["login", "public", "proxy"] },

 node = { type = "t3.medium", count = 10,tags = ["node"] }

 }

 volumes = {

 nfs = {

 home = { size = 100 }

 project = { size = 500 }

 scratch = { size = 500 }

 }

 }

main.tf

CODE EDITOR

 source = "./gcp"

 config_git_url = "https://github.com/ComputeCanada/puppet-magic_castle.git"

 config_version = "14.0.0"

 cluster_name = "phoenix"

 domain = "your-domain-name.cloud"

 image = "rocky-8-gcp-optimized"

 instances = {

 mgmt = { type = "n2-standard-2", count = 1, tags = ["mgmt", "puppet", "nfs"] },

 login = { type = "n2-standard-2", count = 1, tags = ["login", "public", "proxy"] },

 node = { type = "c3-standard-8", count = 10,tags = ["node"] }

 }

 volumes = {

 nfs = {

 home = { size = 100 }

 project = { size = 500 }

 scratch = { size = 500 }

 }

 }

main.tf

To facilitate the
support of multiple
providers, the inputs
are transformed by
common submodules.

30

Each main module uses 3 common sub-modules:

common/variables.tf

common/outputs.tf

common/design

common/configuration

common/provision

31

common/design

design sub-module transforms the inputs into maps used to
generate the resources specific to each provider:

var.instances

var.volumes

var.cluster_name

var.domain out.instances

out.volumes

CODE EDITOR

module "design" {
 source = "../common/design"
 cluster_name = var.cluster_name
 domain = var.domain
 instances = var.instances
 pool = var.pool
 volumes = var.volumes
 firewall_rules = var.firewall_rules
}

resource "aws_instance" "instances" {
 for_each = module.design.instances_to_build
 instance_type = each.value.type
 ami = lookup(each.value, "image", var.image)

...

aws/infrastructure.tf

CODE EDITOR

module "design" {
 source = "../common/design"
 cluster_name = var.cluster_name
 domain = var.domain
 instances = var.instances
 pool = var.pool
 volumes = var.volumes
 firewall_rules = var.firewall_rules
}

resource "google_compute_instance" "instances" {
 for_each = module.design.instances_to_build
 machine_type = each.value.type
 project = var.project

...

gcp/infrastructure.tf

34

common/configuration

configuration sub-module creates the cloud-config file (user_data).
This file configures SSH access and bootstraps Puppet on first boot.

var.config_version

var.instances

...

out.user_data

out.hostkeys

out.terraform_data

CODE EDITOR

#cloud-config
mounts:
- [ephemeral0, /mnt/ephemeral0]
users:
 - name: ${sudoer_username}
 groups: adm, wheel, systemd-journal
 homedir: /${sudoer_username}
 selinux_user: unconfined_u
 sudo: ALL=(ALL) NOPASSWD:ALL
 ssh_authorized_keys:
%{ for key in ssh_authorized_keys ~}
 - ${key}
%{ endfor ~}

runcmd:
 - sed -i '/HostKey \/etc\/ssh\/ssh_host_ecdsa_key/ s/^#*/#/' /etc/ssh/sshd_config
 - chmod 644 /etc/ssh/ssh_host_*_key.pub
 - chgrp ssh_keys /etc/ssh/ssh_host_*_key.pub
%{ if contains(tags, "puppet") }
Install Java 11 and puppetserver
 - dnf -y install java-11-openjdk-headless puppetserver-7.14.0

...

puppet.yaml

CODE EDITOR

module "configuration" {
 source = "../common/configuration"
 inventory = local.inventory
 config_git_url = var.config_git_url
 config_version = var.config_version
 ...
}

resource "aws_instance" "instances" {
 user_data = module.configuration.user_data[each.key]

...

aws/infrastructure.tf

common/provision

provision copies the state (instances, #cpus, #gpus, volumes, etc.)
via SSH to the Puppet server as a YAML file (terraform_data.yaml).

var.hieradata

var.instances

...
remote-exec

provisioner file

 "node4":

 "hostkeys":

 "ed25519": ssh-ed25519 …

 "rsa": ssh-rsa …

 "id": "droid-node4"

 "local_ip": "10.0.0.11"

 "public_ip": ""

 "specs": { "cpus": "2", "gpus": 0, "ram": "8000" }

 "tags": ["node", "pool"]

terraform_data.yaml

terraform_data.yaml

Puppet manages the configuration

plan apply configure

CODE EDITOR

 source = "./aws"

 config_git_url = "https://github.com/ComputeCanada/puppet-magic_castle.git"

 config_version = "13.0.0"

 cluster_name = "phoenix"

 domain = "your-domain-name.cloud"

 image = "ami-09ada793eea1559e6"

 instances = {

 mgmt = { type = "t3.medium", count = 1, tags = ["mgmt", "puppet", "nfs"] },

 login = { type = "t3.medium", count = 1, tags = ["login", "public", "proxy"] },

 node = { type = "t3.medium", count = 10, tags = ["node"] }

 }

 volumes = {

 nfs = {

 home = { size = 100 }

 project = { size = 500 }

 scratch = { size = 500 }

 }

 }

The role of an instance is
defined by its tags.

main.tf

CODE EDITOR

magic_castle::site::tags:
 login:
 - motd
 - profile::fail2ban
 - profile::slurm::submitter
 - profile::ssh::hostbased_auth::client
 - profile::nfs
 - profile::software_stack
 mgmt:
 - mysql::server
 - prometheus::server
 - prometheus::alertmanager
 - profile::metrics::slurm_exporter
 - profile::rsyslog::server
 - profile::squid::server
 - profile::slurm::controller
 - profile::slurm::accounting
 - profile::accounts
 - profile::nfs
 - profile::users::ldap
 node:
 - profile::gpu
 - profile::jupyterhub::node
 - profile::slurm::node
 - profile::metrics::slurm_job_exporter
 - profile::nfs::client
 - profile::software_stack

Tags are
associated
with a list of
Puppet
classes.

data/site.yaml

profile::users::ldap::users::

 alice::

 groups: ['engineering']

 public_keys: ['ssh-rsa ... user@local', 'ssh-ed25519 ...']

profile::fail2ban::ignoreip:

 - 132.203.0.0/16

Puppet configuration customization: YAML

● Magic Castle configuration is done entirely through Puppet classes.
● There are over 40 classes that can be customized.
● Customization can happen before a cluster is launched or after.
● New tags can also be added or old tags can be redefined.

https://github.com/computeCanada/puppet-magic_castle

44

Autoscaling

● Terraform CLI runs in a cloud
● A single API for Slurm to interact with

Terraform Cloud is available as a hosted service at
https://app.terraform.io.

Autoscaling with Terraform Cloud

https://app.terraform.io

Autoscaling
instances = {

 mgmt = {

 type = "n2-standard-2"

 count = 1

 tags = ["mgmt", "puppet", "nfs"]

 },

 login = {

 type = "n2-standard-2"

 count = 1

 tags = ["login", "public", "proxy"]

 },

 node = {

 type = "n2-standard-2",

 count = 3,

 tags = ["node",,"pool"]

 }

}

main.tf

Autoscaling: resume

mgmt

submit
job

resume
node[X-Y]

autoscale

API

patch
var.pool

execute
run

node provider

create
instances

register n
o

d
e

Autoscaling: suspend

mgmt

idle
timeout

suspend
node[X-Y]

autoscale

API

patch
var.pool

execute
run

node provider

destroy
instances

▷ The compute nodes can be heterogeneous
(GPU, x86, ARM64). Slurm determines which
nodes to power-up based on the job queue.

▷ The autoscaling logic is cloud-agnostic and is
expressed in 200 lines of Python.

▷ The API token requires only 2 permissions:
modify a variable and create a plan.

50

MIG Configuration
with Cloud Nodes

MIG Configuration with cloud nodes

1. Define MIG Profiles in Terraform (main.tf)
2. [compute] Puppet installs NVIDIA drivers
3. [all] Puppet generates the slurm.conf from terraform_data.yaml
4. Puppet generates the gres.conf

○ [controller] using the information from terraform_data.yaml
○ [compute] using nvidia_gres.sh which is based on nvidia-smi

5. [compute] Puppet uses nvidia-mig-parted to apply config

Combined with autoscaling, a user can request a specific MIG profile

Problem:
● To configure MIGs in Slurm, specify AutoDetect=nvml in gres.conf
● But AutoDetect cannot be used with cloud nodes.

Solution:

https://github.com/ComputeCanada/puppet-magic_castle/blob/main/site/profile/templates/slurm/nodes.conf.epp
https://github.com/ComputeCanada/puppet-magic_castle/blob/main/site/profile/files/slurm/nvidia_gres.sh
https://github.com/NVIDIA/mig-parted
https://slurm.schedmd.com/gres.html#MIG_Management
https://slurm.schedmd.com/gres.conf.html#OPT_AutoDetect

CODE EDITOR

 instances = {

 ...

 gpu-sm = {

 type = "gpu32-240-3450gb-a100x1",

 count = 5,

 tags = ["node", "pool"],

 mig = { "1g.5gb" = 7 }

 }

 gpu-md = {

 type = "gpu32-240-3450gb-a100x1",

 count = 5,

 tags = ["node", "pool"],

 mig = { "2g.10gb" = 2, "3g.20gb" = 1 }

 }

 }

main.tf

Use case 1:
Education

1k+ workshops
and university courses have used Magic Castle to
teach advanced research computing.

Since Magic Castle initial release in 2018

● Uses Magic Castle as the hands-on
exercise platform for their entire
2023-2024 training program

● Provides and administers Magic
Castle clusters to graduate courses
from various disciplines: AI,
bioinformatics, neuroscience,
chemistry

https://drive.google.com/file/d/1FgtOjhnr7txCtoYnhRY2x44ltfaJo5-Z/view

Use case 2:
Self-service HPC cluster

creation platforms

Magic Castle is integrated in CACAO
and can be launched easily in
Jetstream2 cloud.

https://docs.jetstream-cloud.org/general/virtualclusters
https://github.com/edwins/magic_castle
https://docs.jetstream-cloud.org/ui/cacao/deployment_magic_castle/

https://docs.jetstream-cloud.org/general/virtualclusters
https://github.com/edwins/magic_castle
https://docs.jetstream-cloud.org/ui/cacao/deployment_magic_castle/

Digital Research Alliance of Canada
sponsors the development of
Magic Castle own platform for
spawning virtual HPC clusters:
MC-Hub

https://github.com/computeCanada/mc-hub

https://github.com/computeCanada/mc-hub

Use case 3:
Scientific platforms

uses Magic Castle as its platform to compile
and test software built with EasyBuild before
deploying them on CVMFS

Contributors
EESSI

software-layer

Create PR

Testing

Reviewers

Submit build

jobs

(automated)

Build nodes

x86_64

Generic haswell skylake

zen2 zen3

aarch64

generic neoverse_n1 neoverse_v1

bot
https://www.eessi.io/

https://www.eessi.io/

SecureData 4 Health: cancer patient genome sequencing

● Single infrastructure - OpenStack
● Fully isolated project per research client
● Fulfilled hospitals cybersecurity

requirements
● One Magic Castle cluster per client
● Client example:

Marathon of hope Cancer Network
○ Comparison of healthy vs

cancerous cells
○ 2000 cores
○ 120k jobs so far in 2024

https://www.sd4health.ca/

https://www.marathonofhopecancercentres.ca/
https://www.sd4health.ca/

National Microbiome Data Collaborative EDGE platform

https://nmdc-edge.org/home

Magic Castle
● Allows researchers to process data

with standard NMDC
bioinformatics workflows

● Workflows are configured through
the platform

● The jobs are scheduled in a Magic
Castle cluster via Cromwell Server

● Magic Castle cluster is spawned
via CACAO in Jetstream2

https://nmdc-edge.org/home

★ Simple to use
★ Batteries included:

software, scaling, MIG, etc.
★ Ideal software environment

to integrate HPC into
platforms and for teaching

cloud-agnostic and
open source

https://www.github.com/computecanada/magic_castle

https://www.github.com/computecanada/magic_castle

